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When a double rf system is subjected to sinusoidal phase modulation, the Poincaré surfaces
of the section display a rich spectrum of resonance islands. Stable and unstable fixed points of
these resonance islands form a tree of bifurcation branches which can be explained as parametric
resonances generated by external phase modulation. A semianalytic determination of the condition
for the bifurcation of fixed points is presented for an autonomous Hamiltonian of one degree of
freedom with sinusoidal time dependent perturbation.
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For low-energy synchrotrons, a charged particle in a
bunched beam may encounter enormous electromagnetic
forces. The effects of the space charge force are mani-
fested as transverse incoherent and coherent tune shifts,
longitudinal impedance, and potential well distortions,
etc. The beam intensities in booster synchrotrons at
Fermilab, Brookhaven National Laboratory, and Con-
seil Europeén pour la Recherche Nucléaire (CERN) are
known to be limited by the incoherent space charge tune
shift [1]. To improve beam intensity for the CERN low-
energy boosters, two rf cavities operating at harmonics
5 and 10 have been used to flatten out the longitudi-
nal bunch shape. This improves the beam intensity by
about 25-30% [2]. However, the system exhibited coher-
ent sextupole and decapole synchrotron mode instabili-
ties [3]. Microwave instabilities can result from insuffi-
cient Landau damping due to a small local synchrotron
tune spread [4]. But, since the observed instabilities
were found to be independent of the beam intensity, they
might arise from single particle dynamics associated with
intrinsic time dependent noise in the accelerator.

Recently a class of low-energy synchrotrons with elec-
tron cooling and/or stochastic cooling have been con-
structed for research in nuclear and atomic physics [5].
These cooler rings also encounter an insurmountable
space charge problem related to the high charge den-
sity attained by electron cooling. The beam intensity
of these cooler rings has been found to be operating at
the boundary of longitudinal and transverse stabilities
[6). To achieve the high intensity needed for nuclear and
atomic physics experiments, it is a logical step to employ
a double rf system in order to stretch out the longitudinal
profile. In our first experiment with a double rf system at
the Indiana University Cyclotron Facility cooler ring, the
bunched beam intensity was found to increase by about a
factor of 4 in comparison with that achieved in operating
only the main rf cavity at an identical rf voltage.

The double rf system is generally important for many
synchrotrons which require bunched beam manipulation.
Furthermore, there have been recent studies on stochastic
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cooling with two rf systems [7]. These studies were based
on a first order perturbation expansion of the double rf
potential, where an analytic solution is available. How-
ever, the synchrotron tune obtained from the first order
perturbation theory is not reliable for phase amplitudes
beyond about 1 rad. Thus, the response of the system to
an external time dependent perturbation is considerably
different than that of the first order perturbation theory.
The responses to these perturbations are characterized
by their resonance behavior and are called parametric
resonances. This paper is organized as follows. We will
formulate the unperturbed Hamiltonian for the double
rf system, define the action-angle variables, and evaluate
the synchrotron tune as a function of action (or energy).
The time dependent perturbation such as the rf phase
modulation is then introduced and expanded in terms
of the action-angle variables. The parametric resonances
arising from the time dependent perturbation are then
identified. We then compare our theory with experimen-
tal data for a single rf system and results from numerical
simulations for the double rf system.

For an ideal synchronous particle orbiting in a circu-
lar accelerator at the angular revolution frequency wy,
the rf accelerating field is operating at a harmonic of the
revolution frequency. The ratio of the rf frequency to
the revolution frequency is called the harmonic number
h. For a nonsynchronous particle with small momentum
deviation, the rf sinusoidal field also provides a focusing
force. Thus, nonsynchronous particles are executing syn-
chrotron oscillations about the synchronous particle at
a frequency called the synchrotron frequency. The num-
ber of synchrotron oscillations in one orbital revolution
is called the synchrotron tune Q,.

For a double rf system, let h1, hy be harmonic numbers,
Vi1, V2 be voltages of the primary and the secondary rf
cavities, respectively. We consider the stationary state
case so that the synchronous particle does not gain or
lose energy in either cavity. Let v, be the small amplitude
synchrotron tune with the primary rf system alone, i.e.,

1/2
v, = ("2‘—3;-;%1) , where Bc and F are, respectively, the
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speed and the total energy of the particle, and 7 is the
phase slip factor. Hamilton’s equations for single particle
synchrotron motion are

b=v,6, &= —V,s(sin @ — rsin ho).

Here the dots are derivatives with respect to the orbiting
angle 6, which serves as the time coordinate, (¢, §) are the
normalized conjugate phase space variables referenced to
the primary rf system with § = %l %E as the normalized

off momentum variable, h = ,ﬁ: is the ratio of the har-

monic numbers, and r = % is the ratio of rf voltages.

The corresponding Hamiltonian is Hy = 3v,6% + V(9)

with V(¢) = v, [(1 —cos¢) — £(1 —cos h(j))] . Although

the method we use can be applied for arbitrary r and

h, we consider only the case r = % For the purpose of

illustration, numerical evaluation will be done for A = 3.
The action is given by

1
7= 5= § dde, (1)

and the phase space area of a given torus is 27J. Since
the Hamiltonian is autonomous, a torus corresponds to
a constant “energy”, i.e., Hyp = E, which, for a stable
orbit (0 < VE < %6), can be fitted numerically with the
following expression, ;E—' = AJY3(1 — ay J?/3 4 apJ4/? —

4/3
a3zJ?) (J < 2.280), where the parameter 4 = [31/;{"] /
is obtained from the first order perturbation expansion
in the potential, i.e., V =~ 1¢*, with the complete ellipti-
cal function of first kind K =K (%) =1.85407. Applying
the Bogoliubov averaging method (8] to the double rf po-
tential, V(¢), one obtains a; = 0.1762 and a; = 0.0424.
Since the rate of convergence in the E vs J expansion is
very slow for a large J, the truncated a3 term is fitted
to the numerical solution of Eq. (1) in order to dupli-
cate the characteristic behavior of the synchrotron tune
Q, = %. This results in a3 ~ 0.039. Figure 1 shows
Qs /v, and its rational multiples as a function of the en-
ergy. The derivative of the synchrotron tune with respect
to the action becomes zero at J ~ 1 rad?, where Landau
damping, an essential mechanism for beam stability, also
disappears.

To study the particle beam stability, we apply a small
perturbation to the system and measure the response of
the particle motion. We consider here a small pertur-
bation produced by external phase modulation, where
the equation for the phase ¢ is replaced by, ¢ = v,0 +
Vma cos v, 6. Here v, and a are, respectively, the modu-
lation tune and the modulation amplitude. Such an ex-
ternal modulation may arise from synchrobetatron cou-
pling, rf noise, or a wake field resulting from longitudinal
impedances, etc. [9]. The corresponding Hamiltonian be-
comes

H = Hy + vpad cos v,,6. (2)

In the limit of small perturbation, i.e., a < 1, the so-
lution can be expanded in terms of the action angle of
the unperturbed Hamiltonian Hy. Using the generating

function F3(¢,J) = ff 8(¢')d¢’, where # is an extremum
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FIG. 1. The synchrotron tune —Q—';(,—J—) and some of its ratio-
nal harmonics for r = %, h = 3 are shown as a function of
“energy.”

of the phase angle for a given torus, the angle variable is
then given by ¢ = %‘ = % fg %dd)'.

Now the task is to express the perturbation in terms
of the action angle of the unperturbed Hamiltonian, i.e.
8§ = 3, 9a(J)e™¥ [9]. Here the expansion amplitude
gn(J) can be obtained from the inverse Fourier transform
as

1 " —in
gn(J) = p Se "V dyp, (3)

-

which can be evaluated and parametrized in terms of J.
Since V(¢) is an even function, ¢ varies from —= to m for
a given torus, and § is an odd function of 1 with reflective
symmetry about the § axis in the (¢, ) phase space, the
integral of Eq. (3) is zero except for odd integral n. Thus,
phase modulation of the double rf system gives rise to
only odd order ezcitations, similar to that of the single
rf system. For small amplitude oscillations in the single
rf system, the dominant resonance driving term is the
first harmonic [9]. On the other hand, the resonance
driving strengths for the double rf system are given by
|92n41] = 0.8(2n 4 1)e~""J?/3 (n = 1,3,5,...), so the
resonance strength is distributed over many harmonics.

Once the g,, coefficients are obtained, the Hamiltonian
of Eq. (2) becomes

H=E(J)+vma Y |gn(J)|[cos(ny) — vmb + 7n)
n=odd
+ cos(nY + vmb + vn)], (4)

where 7, is the phase of the Fourier amplitude g,. For
a < 1, we have ¢ ~ Q, and the resonance (stationary
phase) condition occurs when the modulation tune equals
an odd integral multiple of the synchrotron tune. In a
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single resonance dominated regime, we transform the co-
ordinates into the resonance rotating frame by using the
generating function Fp(¢,I) = (¢ — =6 4 12)I. The
new conjugate action-angle variables (I,x) are given by
I=J, x=1%—"0+ 1=, and the Hamiltonian becomes

H = E(I) = "I + vmalga()| cos(nx) + AH(I, X, ).
(5)

Neglecting the time dependent perturbation with
(AH(I,x,0)) = 0, the stable and unstable fixed points
(SFP’s and UFP’s) are given by

sinnxgp =0, 71nQs(Ip) — Vm £ nupmalg), (Ip)] =0, (6)

and the Poincaré surfaces of section around SFP’s are
composed of n islands. The width of a resonance island
1/2
is approximately given by Al ~ 4 ["—‘“‘a_ﬂqlg—'l‘—l] e When
[:24 =Isp
the resonance action is near I ~ 1 rad?, where the
detuning parameter |%2¢| is small, the island width be-
comes large.

We will now discuss the bifurcation of fixed points
for the Hamiltonian of Eq. (2). The invariant tori for
the Hamiltonian can be obtained by numerically inte-
grating Hamilton’s equations of motion, and by tak-
ing the Poincaré surfaces of section. Figure 2 shows
examples of these Poincaré surfaces of section with
Vm = 0.5v,, a = 2.5°, and v, = 0.0008, where the
absolute value of v, is irrelevant to the dynamics of
the system. The stochasticity at the origin and the
separatrix arises from overlapping resonances, which
can be understood by drawing a horizontal line at
vy = 0.5v, in Fig. 1. Resonances will occur at the
energies where the line cut through resonance curves
Q.(1), 2Q.(1), £Q. (1), 2Q, (1), £Q.(I), 3Q,(I), etc. The
chaotic region near the origin arises from overlapping
higher order resonance islands occurring in the order of
4.:,, %, g, % Here, the % (or 4:2) resonance arises from sec-
ond order perturbation by combining the n =1 (1:1) and
n = 3 (3:1) harmonics; the 3 resonance arises from third
order perturbation by combining 1:1 and 4:2 resonances,
etc. The sea of stochasticity arises from overlapping sep-
aratrices of these high order resonances. At a modula-
tion amplitude a < 0.5°, higher order resonances become
invisible, while the n = 1, 3,5, . . ., resonances remain im-
portant. .

Since the synchrotron tune peaks at Q, =~ 0.9177v,
and vanishes at both large and small actions or energies,
the resonance condition of Eq. (6) for a given order n
will occur at two different actions until the modulation
tune reaches the peak synchrotron tune ¢),. Therefore,
when v,,, is increased toward @,, the SFP and the UFP
associated with the outer amplitude and the SFP and
the UFP associated with the inner amplitude approach
each other. The inner SFP and the outer UFP form a
bifurcation branch around v,, = @,. Similarly, the inner
UFP and the outer SFP form another bifurcation branch.
When the modulation tune is increased beyond the first
order resonance, higher order resonances bifurcate in a
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similar fashion. This tree of bifurcation continues until
the driving amplitude g, becomes too small to be de-
tected.

Figure 3 shows a compilation of measured SFP’s
for the single rf system subject to phase modulation
[9], where the phase modulation amplitudes were a =
0.57°,1.14°,2.29°, and 3.36°, respectively, for the first
harmonic and ¢ = 6° for the third harmonic. There
was no visible second harmonic excitation due to phase
modulation. The experimental data agree well with the
prediction of Eq. (6). Note here that the UFP bifurcates
with the inner SFP in this single rf system.

For the double rf system, the SFP’s of resonance is-
lands can be obtained from numerical tracking simula-
tions as a function of the modulation tune (see Fig. 2).
The square symbols of Fig. 4 shows the modulation
tune vs the energy for SFP’s obtained numerically with
a = 1°. The harmonics of the synchrotron tune, Q,(E)
and 3Q,(E) as determined from Eq. (6) are shown as
solid lines. We thus observe that the bifurcation point oc-
curs when the modulation frequency reaches the flat top of
the synchrotron frequency. When the modulation ampli-

FIG. 2. The upper part of the figure shows the Poincaré
surfaces of section obtained numerically with following pa-
rameters v, = 0.0008, v,, = 0.5v,, and a = 2.5°, where the
absolute value of v, plays no important dynamical role. The
lower part of the figure shows the close up look of the phase
space map near the origin. The stochasticity near the origin
and the separatrix arises from overlapping resonances. These
resonances can be visualized by drawing a horizontal line at
Vm = 0.5v, on Fig. 1, which cut through many resonances.
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FIG. 3. The SFP’s observed in a single rf system with rf
phase modulation (see Fig. 3 of the first reference in Ref.
[9]) as a function of the maximum phase amplitude é are
compared with the synchrotron tune of the single rf system.
The sidebands around v, = v, arose from the 60 Hz power

supply ripple.

tude is increased, the branches of SFP’s associated with
the inner and outer amplitudes will deviate further apart
from each other. The bifurcation occurs when the inner
SFP’s coincide with the outer UFP’s and vice versa.

In conclusion, we have developed a semianalytic
method for analyzing the parametric resonance of an au-
tonomous nonlinear oscillator perturbed by a time de-
pendent phase modulation. We found that odd order
synchrotron modes are important to the double rf sys-
tem subjected to sinusoidal phase modulation. Although
not discussed in this paper, when the rf voltage is sub-
jected to external sinusoidal amplitude modulation, only
even order synchrotron modes are excited. Thus, the co-
herent beam instability observed in CERN boosters arose
mainly from a perturbation having the characteristics of
rf phase modulation. This correlation indicates that the
nature of the coherent instability may be intimately re-
lated to resonances in the Hamiltonian dynamics.

We have also shown that the tree of bifurcation
branches for the SFP’s and UFP’s has the characteris-
tic tune of the Hamiltonian system. When the phase
modulation amplitude is larger than 2°, the double rf
system exhibits stochasticity near the origin of the phase
space at small modulation tunes (see Fig.2). This chaos
arises from overlapping high order resonances, which be-
come less important at higher modulation tunes due to
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FIG. 4. The “energies” of the stable fixed points (square
symbols) obtained from Poincaré surfaces of section for var-
ious modulation tunes v, at the modulation amplitude of
a = 1°, are compared with odd harmonics of the synchrotron
tune. Note here that the bifurcation of resonance fixed points
occurs at the maximum value of the synchrotron tune. The
nature of the response differs greatly from that of the single
rf system.

a smaller resonance driving strength g,. The chaos at
large J near the rf bucket boundary also arises from over-
lapping high order resonances, which occur in both the
single rf and the double rf systems.

We have discussed only the limited parametric space
of r = %, which is usually chosen to be the optimal oper-
ational condition for particle beam manipulation in cir-
cular accelerators. When 7 > %, the synchrotron tune
(z = 1 in Fig. 1) would exhibit double peak structure.
The tree of bifurcation for parametric resonances can be
characterized with the tune of the unperturbed Hamilto-
nian. Three chaotic regions could exist when the phase
modulation is applied. When r < %, the synchrotron
tune becomes nonzero at the origin, and the chaos at the
origin disappears. However, the system may be more sus-
ceptible to phase modulation at v, =~ v,. When r <« )lu
then the system behaves like the single rf system, where
the bifurcation of resonance islands is shown in Fig. 3.
Details of these studies will be reported shortly.
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